三角函數是初中數學重要知識點,其中包括銳角三角函數定義、三角函數關系、倍角公式、三角和的公式等。我們在學習的過程中要在理解的基礎上加以記憶,三角函數這一部分,特點就是公式多,想要熟悉掌握公式關鍵是自己詳細地把這些公式推導一遍,順著源頭,一步步地推導。推導一遍后,再去記憶這個公式就很容易了。
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。
正弦(sin):對邊比斜邊,即sinA=a/c
余弦(cos):鄰邊比斜邊,即cosA=b/c
正切(tan):對邊比鄰邊,即tanA=a/b
余切(cot):鄰邊比對邊,即cotA=b/a
正割(sec):斜邊比鄰邊,即secA=c/b
余割(csc):斜邊比對邊,即cscA=c/a
互余角的關系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數關系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
tan2A=2tanA/(1-tan2A)
Sin2A=2SinA?CosA
Cos2A=Cos^2A--Sin2A=2Cos2A-1=1-2sin^2A
三角函數求導公式:(sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1...
1、利用三角函數的有界性,利用三角函數的有界性如|sinx|≤1,|cosx|≤1來求三角函數的最值。2、利用三角函數的增減性,如果f(x)...
三角函數公式不是只能用于直角三角形,三角函數公式對于任意角度,都有其值;相對應的函數值。只是對于直角三角形,三角函數有一個明顯的推理工程,便...
三角函數是初中數學的重要內容,同學們一定要學好三角函數。數學上的很多定理,你要把它記下來很難,但你要是把這個定理求證一遍,它就活靈活現地展現...
三角函數是初中數學的重要知識點,我們一定要仔細研究,好好學習。任意角的集合與一個比值的集合變量之間的映射就是三角函數的本質。通常用平面直角坐...
實際上三角函數這塊內容還是比較好學的,只要掌握了公式的意義,能夠熟練記憶這些公式,在考題中很容易就找到解答方法。希望同學們在日常的學習中要打...
本文中,小編為大家整理了一些初中三角函數入門知識點,一起來看看吧!
特殊三角函數值一般指在30°,45°,60°等角的三角函數值。這些角度的三角函數值是經常用到的。并且利用兩角和與差的三角函數公式,可以求出一...